广义随机Jordan代数的Jordan导子Jordan Derivation of Generalized Stochastic Jordan Algebra
温柳婷;陈清华;陈正新;
摘要(Abstract):
设F是特征不为2的域, M(n,F)为域F上全体n×n阶矩阵构成的矩阵代数,α为Fn中非0列向量,令L (α)={A∈M(n,F) Aα=0}.证明L(α)为M(n,F)的一个Jordan子代数(称为广义随机Jordan代数),并证明L(α)的所有的Jordan导子都是内导子.
关键词(KeyWords): Jordan代数;Jordan导子;内导子
基金项目(Foundation): 国家自然科学基金资助项目(11871404、11471269);; 福建省自然科学基金资助项目(2016J01002)
作者(Authors): 温柳婷;陈清华;陈正新;
参考文献(References):
- [1]HERSTEIN I N.Jordan derivations of prime rings[J].Proc Amer Math Soc,1957,8(6):1104-1110.
- [2]CUSACK J M.Jordan derivations on rings[J].Proc Amer Math Soc,1975,53(6):321-324.
- [3]BEIDAR K I,BRESAR M,CHEBOTAR M A.Jordan isomorphisms of triangular matrix algebras over a connected commutative ring[J].Linear Algebra Appl,2000,312(1):197-201.
- [4]WANG X T,YOU H.Decomposition of Jordan automorphisms of strictly triangular matrix algebra over local rings[J].Linear Algebra Appl,2004,392(1):183-193.
- [5]BENKOVIC D.Jordan derivations and antiderivations on triangular matrices[J].Linear Algebra Appl,2005,397(6):235-244.
- [6]HUANG L P,BAN T,LI D Q,et al.Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID[J].Linear Algebra Appl,2006,419(2):311-325.
- [7]庄金洪,谭宜家.关于上三角矩阵代数的Jordan导子[J].福州大学学报(自然科学版),2012,40(6):707-712.
- [8]BOUKAS A,FEINSILVER P,FELLOURIS A.Structure and decompositions of the linear span of generalized stochastic matrices[J].Communications on Stochastic Analysis,2005,9(2):239-250.
- [9]GUERRA M,SARYCHE A.On the stochastic Lie algebra[EB/OL].(2018-05-18).https:∥arxiv.org/abs/1805.07299.
- [10]李立斌,魏俊潮.矩阵代数的Stochastic矩阵子代数[J].工科数学,1998(4):28-29.