有界线性算子的性质(Q)和(QQ)Property(Q) and(QQ) for Bounded Operators
林群群;陈俐宏;苏维钢;
摘要(Abstract):
定义了两种新的谱性质:性质(Q)和性质(QQ),从而再次推广了Weyl型定理,并探讨了这两种谱性质同其它Weyl型定理之间的关系.
关键词(KeyWords): Banach空间;Weyl型定理;性质(Q);性质(QQ)
基金项目(Foundation): 国家自然科学基金资助项目(11171066);; 福建省自然科学基金资助项目(2013J01003)
作者(Authors): 林群群;陈俐宏;苏维钢;
参考文献(References):
- [1]AIENA P.Semi-Fredholm operators,perturbation theory and localized SVEP[M].Merida:Venezuela,2007.
- [2]BERKANI M,SARIH M.On semi-B-Fredholm operators[J].Glasgow Math J,2001(43):457-465.
- [3]COBURN L A.Weyl's theorem for nonnormal operators[J].Michigan Math,1966(13):285-288.
- [4]HARTE R E,Lee W Y.Another note on Weyl's theorem[J].Trans Amer Math Soc,1997(349):2115-2124.
- [5]RAKOˇCEVIC'V.Operators obeying a-Weyl's theorem[J].Rev Roumaine Math Pures Appl,1989(34):915-919.
- [6]DJORDJEVIC'S V,Han Y M.Browder's theorems and spectral continuity[J].Glasgow Math,2000(42):479-486.
- [7]BERKANI M,ZARIOUH H.New extended Weyl type theorems[J].Mat Vesnik,2010(62):145-154.
- [8]GUPTA A,KASHYAP N.On the property(Baw)[J].International Journal of Pure and Applied Mathematicas,2012(76):625-632.
- [9]GUPTA A,KASHYAP N.Variations on Weyl type theorems[J].Int J Contemp Math Sciences,2013(8):189-198.
- [10]BERKANI M,KOLIHA J J.Weyl type theorems for bounded linear operators[J].Acta Sci Math(Szeged),2003(69):359-376.
- [11]AIENA P.Fredholm and local spectral theory,with applications to multipliers[M].New York:Kluwer Academic Publishers,2004.
- [12]ZENG Q P.Property(a Bw)and perturbations[J].Annals of Functional Analysis,2015(6):212-223.