纳米TiO_2对卡洲萍同步富集水体中Cu(Ⅱ)与Cr(Ⅵ)的影响研究A Study on Simultaneous Bioaccumulation of Cu(Ⅱ) and Cr(Ⅵ) by Azolla caroliniana in the Presence of TiO_2 Nanoparticles
游海萍;汪婷;徐国忠;陈祖亮;
摘要(Abstract):
研究了投加不同质量浓度纳米二氧化钛(nTiO2)颗粒对卡洲萍(Azolla aroliniana)同步富集混合溶液中Cu(Ⅱ)和Cr(Ⅵ)的影响.结果显示,卡洲萍同步富集Cu(Ⅱ)和Cr(Ⅵ)时,对Cu(Ⅱ)和Cr(Ⅵ)的富集量分别为12.02 mg·g-1和4.17 mg·g-1,对Cu(Ⅱ)的富集效率明显高于Cr(Ⅵ).当nTiO2的投加量为300 mg·L-1时,卡洲萍对Cu(Ⅱ)和Cr(Ⅵ)的富集量分别下降50.8%和14.3%.红外分析显示卡洲萍在nTiO2存在的条件下可以诱导产生更多的蛋白质,核酸等物质,这些物质可以增强植物的抗逆性,以减轻重金属毒害;SEM和EDS图谱表明Cu(Ⅱ)和Cr(Ⅵ)吸附在nTiO2颗粒上,增大进入植物体的难度,降低了进入萍体中重金属的量;且nTiO2质量浓度较高时本身也会对卡洲萍产生毒性,胁迫植物体分泌一些高分子生物聚合物,影响植物吸收Cu(Ⅱ)和Cr(Ⅵ).最后,通过回归分析结果显示,卡洲萍富集重金属阳离子Cu(Ⅱ)和重金属阴离子Cr(Ⅵ)的响应机制相同,与重金属离子的电性无关.本文研究结果表明nTiO2进入水体,与水体中重金属离子相互作用,将Cu(Ⅱ)和Cr(Ⅵ)吸附在纳米颗粒表面,而增大其进入植物体的难度,影响其与水生植物的相互作用.
关键词(KeyWords): 纳米二氧化钛;卡洲萍;Cu(Ⅱ);Cr(Ⅵ);植物富集
基金项目(Foundation): 福建师范大学闽江学者人才引进基金资助项目(200604)
作者(Authors): 游海萍;汪婷;徐国忠;陈祖亮;
参考文献(References):
- [1]王义,黄先飞,胡继伟,等.重金属污染与修复研究进展[J].河南农业科学,2012,41(4):1-6.
- [2]Rai P K.Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes[J].Critical Reviews in Environmental Science and Technology,2009,39(9):697-753.
- [3]Stood A,Uniyal P L,Prasanna R,et al.Phytoremediation potential of aquatic macrophyte-Azolla[J].Ambio,2012,41(2):122–137.
- [4]Zayed A,Gowthman S,Terry N,et al.Phytoaccumulation of trace elements by wetland plants:I.Duckweed[J].Journal of Environmental Quality,1998,27(3):715-721.
- [5]Prasad M N V,Malec P.Waloszek A,et al.Physiological responses of Lemna trisulca L.(duckweed)to cadmium and copper bioaccumulation[J].Plant Science,2001,161(5):881-889.
- [6]Rai P K,Tripathi B D.Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B.pant sagar of singrauli industrial region,india[J].Environmental Monitoring and Assessment,2009,148(1/4):75-84.
- [7]Bennicelli R,Stezpniewska S,Banach A,et al.The ability of Azolla caroliniana to remove heavy metals(Hg(Ⅱ),Cr(Ⅲ),Cr(Ⅵ))from municipal wastewater[J].Chemosphere,2004,55(1):141-146.
- [8]Cies'liński G,Van Rees K C J,Szmigielska A M,et al.Low-molecular-weight-organic acids in rhizosphere solis of durum wheat and their effect on cadmium bioaccumulation[J].Plant Soil,1998,203(1):109-117.
- [9]Clements S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212(4):475-486.
- [10]Wang H H,Shan S Q,Liu T,et al.Organic acids enhance the uptake of lead by wheat roots[J].Planta,2007,225(6):1483-1494.
- [11]Tang C Y,Shan S Q,Xu G Z,et al.Phytoaccumulation of cadmium through Azolla from aqueous solution[J].Ecological Engineering,2011,37(11):1942-1946.
- [12]Recillas S,Garcia A,Gonzalez E,et al.Use of CeO2,TiO2and Fe3O4nanoparticles for the removal of lead from water toxicity of nanoparticles and derived compounds[J].Desalination,2011,277(1/3):213-220.
- [13]Feizi H,Moghaddam P R,Shahtahmassebi N,et al.Impact of bulk and nanosized titanium dioxide(TiO2)on wheat seed germination and seedling growth[J].Biological Trace Element Research,2012,146(1):101-106.
- [14]Song G,Gao Y,Wu H,et al.Physiological effect of anatase TiO2nanoparticles on lemna minor[J].Environmental Toxicology and Chemistry,2012,31(9):2147-2152.
- [15]Sun H,Zhang X,Niu Q,et al.Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles[J].Water,Air,and Soil Pollution,2007,178(1/4):245-254.
- [16]Hartmanna N B,Von der Kammerb F,Hofmannb T,et al.Algal testing of titanium dioxide nanoparticles-Testing considerations,inhibitory effects and modification of cadmium bioavailability[J].Toxicology,2010,269(2/3):190-197.
- [17]侯东颖,冯佳,谢树莲.纳米二氧化钛胁迫对普生轮藻的毒性效应[J].环境科学学报,2012,32(6):1481-1486.
- [18]Lina C,Fugetsua B,Sub Y.Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells[J].Journal of Hazardous Materials,2009,170(2/3):578–583.
- [19]韩润平,皇苎兰,杨贯羽,等.结合重金属前后浮萍的红外光谱比较[J].光谱学与光谱分析,2000,20(4):489-491.
- [20]李星,刘鹏,张志祥.两种水生植物处理重金属废水的FTIR比较研究[J].光谱学与光谱分析,2009,29(4):945-949.
- [21]Fan W H,Cui M M,Shi Z W,et al.Enhanced oxidative stress and physiological damage in daphniamagna by copper in the presence of nano-TiO2[J].Journal of Nanomaterials,2012:398720.
- [22]Rashidi F,Sarabi R S,Ghasemi Z,et al.Equilibrium and thermodynamic studies for the removal of lead(Ⅱ)and copper(Ⅱ)ions from aqueous solutions by nanocrystalline TiO2[J].Superlattices and Microstructures,2010,48(6):577-591.
- [23]Giammar D E,Maus C J,Xie L.Effect of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles[J].Environmental Engineering Science,2007,24(1):85-95.
- [24]梁沛,牵春香,秦永超,等.纳米二氧化钛分离富集和ICP-AES测定水样中Cr(Ⅵ)和Cr(Ⅲ)[J].分析科学学报,2008,16(4):300-303.
- [25]陈坚,金桂英,唐龙飞.红萍在植物治污方面的应用研究进展[J].环境污染治理技术与设备,2002,3(4):74-77.
- [26]Li J Q,Li L P,Zheng L,et al.Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2film on quartz[J].Talanta,2006,68(3):765-770.
- [27]Ma X M,Geizer-Lee J,Deng Y,et al.Interactions between engineered nanoparticles(ENPs)and plants:Phytotoxicity,uptake and accumulation[J].Science of Total Environment,2010,408(16):3053-3061.