关于Grothendieck空间的若干注记Some Notes about Grothendieck Spaces
江樵芬,钟怀杰
摘要(Abstract):
通过一些实例构造,对某些非Grothendieck空间给予直观演示,并给出了c0作为l∞的子空间不可补的一个新视角.
关键词(KeyWords): Grothendieck空间;w收敛;w*收敛
基金项目(Foundation): 国家自然科学基金资助项目(10471025);; 福建省自然科学基金资助项目(F0210014)
作者(Author): 江樵芬,钟怀杰
参考文献(References):
- [1]Grothendieck A.Sur les applications lineaires faiblement compactes d espaces du typeC(K)[J].Canad.J.Math.,1953(5):129-173.
- [2]Diestel J,Uhl J.Vector Measures[M].Providence:AMS.,1977.
- [3]Haydon R.A nonreflexive Grothendieck space that does not containl∞[J].Israel J.Math.,1981(40):65-73.
- [4]Talagrand M.Un nouveauC(K)qui possede la propriete de Grothendieck[J].Israel J.Math.,1980(37):181-191.
- [5]Gonzalez M.Lifting results for sequence in Banach spaces[J].Math.Proc.Camb.Phil.Soc.,1989(105):117-121.
- [6]Borwein J M.Vanderwerff J D.On the continuity of biconjugate convex functions[J].Proc.Amer.Math.Soc.,2002(130):1797-1803.
- [7]俞鑫泰.Banach空间引论[M].上海:华东师范大学出版社,1992.
- [8]俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984.
- [9]Diestel J.Sequences and Series in Banach Spaces[M].New York:Springer-Verlag,1984.
- [10]Bermudez T,Kalton N J.The range of operators on von Neumann algebras[J].Proc.Amer.Math.Soc.,2002(130):1447-1455.
- [11]Holmes R B.Geometry Functional Analysis and Its Applications[M].New York:Springer-Verlag,1975.
- [12]汪林.泛函分析中的反例[M].北京:高等教育出版社,1994.
- [13]赵俊峰.Banach空间结构理论[M].武汉:武汉大学出版社,1991.
- [14]Lindenstrauss J,Tzafriri L.Classical Banach Spaces I[M].New York:Springer-Verlag,1977.
- [15]Phillips R S.On linear transformations[J].Trans.AMS,1940(48):516-541.