带高阶转向点的一阶非线性奇摄动初值问题的鸭轨道Canard Orbits in First-order Nonlinear Singularly Perturbed Initial Value Problems with a Higher-order Turning Point
沈建和;
摘要(Abstract):
基于一阶初值问题的微分不等式,通过构造所需动力学性质的上下解函数,研究带高阶转向点的一阶非线性奇摄动初值问题鸭轨道的存在性.通过一个典型例子,验证了理论结果的正确性;同时数值积分也证实了该理论结果.
关键词(KeyWords): 高阶转向点;奇摄动;一阶初值问题;鸭轨道
基金项目(Foundation): 国家自然科学基金资助项目(11102041);; 中国博士后基金资助项目(2011M500803);; 福建省教育厅资助项目(JA10065)
作者(Authors): 沈建和;
参考文献(References):
- [1]Vasil'eva Adelaida B.The boundary function method for singularly perturbed problems[M].Philadelphia:SIAMStudies in Applied Mathematics,1995.
- [2]Fenichel N.Geometric singular perturbation theory for ordinary differential equations[J].Journal of DifferentialEquations,1979,31:53-98.
- [3]Beck M,Doelman A,Kaper T J.A geometric construction of traveling waves in a bioremediation model[J].Journal of Nonlinear Science,2006,16:329-349.
- [4]Hek G.Geometric singular perturbation theory in biological practice[J].Journal of Mathematical Biology,2010,60:347-386.
- [5]Lin X B.Heteroclinic bifurcation and singularly perturbed boundary value problems[J].Journal of DifferentialEquations,1990,84:319-382.
- [6]O'Malley Robert E Jr.Give your ODEs a singular perturbation[J].Journal of Mathematical Analysis andApplications,2000,251:433-450.
- [7]Me Maesschalck P.On maximum bifurcation delay in real planar singularly perturbed vector fields[J].NonlinearAnalysis TMA,2008,68:547-576.
- [8]Butuzov V F,Nefedov N N,Schneider K R.Singularly perturbed problems in cases of exchange of stabilities[J].Journal of Mathematical Science,2004,121(1):1973-2079.