丘脑底核-苍白球外侧-脚桥核网络的振荡动力学分析Analyses of Oscillation Dynamics in a Subthalamic Nucleus-External Globus Pallidus-Pedunculopontine Nucleus Network
陈国泰;郑艳红;
摘要(Abstract):
基底神经节(BG)是大脑深部一系列神经核团所构成的功能整体,参与精巧运动的形成.BG中丘脑底核(STN)和苍白球(GP)的异常同步振荡被认为与帕金森病(PD)有关.建立丘脑底核-苍白球外侧-脚桥核(STN-GPe-PPN)模型,基于稳定性理论给出了模型产生振荡的稳定性条件,探讨PPN和STN之间的耦合强度对STN-GPe振荡的影响,并分析GPe与STN之间的传输时滞对STN振荡的影响.数值模拟结果表明,丘脑底核受到脚桥核相互之间较强的促进作用和苍白球外侧较大的传输时滞时,丘脑底核会产生更高振幅的振荡.
关键词(KeyWords): 帕金森病;神经元网络;脚桥核;稳定条件;振荡
基金项目(Foundation): 国家自然科学基金面上项目(11672074)
作者(Authors): 陈国泰;郑艳红;
参考文献(References):
- [1]CLAIRE E,HAO L,XIN J.Optogenetic editing reveals the hierarchical organization of learned action sequences [J].Cell,2018,174(1):32-43.
- [2]NAMBU A,TACHIBANA Y,CHIKEN S.Cause of parkinsonian symptoms:firing rate,firing pattern or dynamic activity changes?[J].Basal Ganglia,2015,5(1):1-6.
- [3]PARENT A,HAZRATI L N.Functional anatomy of the basal ganglia.I.The cortico-basal gangliathalamo-cortical loop [J].Brain Research Reviews,1995,20(1):91-127.
- [4]MAZZONE,PAOLO,LOZANO,et al.Implantation of human pedunculopontine nucleus:a safe and clinically relevant target in Parkinson's disease [J].Neuroreport,2005,16(17):1877-1881.
- [5]PLENZ D,KITAL S T.A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus [J].Nature,1999,19(2):599-609.
- [6]TERMAN D,RUBIN J E,YEW A C,et al.Activity patterns in a model for the subthalamopallidal network of the basal ganglia [J].The Journal of Neuroscience :The Official Journal of the Society for Neuroscience,2002,22(7):2963-2976.
- [7]HU B,WANG Q Y.The conditions for onset of beta oscillations in an extended subthalamic nucleusglobus pallidus network [J].Science China Technological Sciences,2014,57(10):2020-2027.
- [8]PAVLIDES A,HOGAN S J,BOGACZ R,et al.Improved conditions for the generation of beta oscillations in the subthalamic nucleus?globus pallidus network [J].European Journal of Neuroscience,2012,36(2):2229-2239.
- [9]刘楠,毕远宏,杨红丽,等.皮质-基底神经节-丘脑网络的振荡动力学分析[J].动力学与控制学报,2020,18(1):76-81.
- [10]赵静仪.帕金森病的基底神经节网络动力学研究[D].呼和浩特:内蒙古大学,2020.
- [11]冯青春,肖民卿,王留海.饱和非线性约束离散时间系统的H∞控制[J].福建师范大学学报(自然科学版),2019,35(1):1-6.