非生物胁迫下小麦TaGAPCp1基因启动子的功能分析Promoter Functional Analysis of TaGAPCp1 Gene under Abiotic Stress
魏文杰;邓霞;杨淑慎;
摘要(Abstract):
探究质体形式的GAPCp (Plastidial glyceraldehyde-3-phosphate dehydrogenase)基因启动子响应干旱、盐和外源ABA等非生物胁迫的机理.首先从中国春小麦中克隆得到TaGAPCp1基因上游1 985 bp的核苷酸序列,经Plant CARE数据库分析表明,该启动子含有众多防御和逆境响应元件(defense and stress-responsive ele-ments,DSREs),激素响应元件(hormone-responsive elements,HREs)和光响应元件(light-responsive ele-ments,LREs).从小麦数据库下载Ta GAPCp亚家族基因启动子序列,序列对比分析表明,该亚家族成员启动子上功能元件种类相近但数量相差较大.构建含TaGAPCp1基因启动子的表达载体,通过农杆菌介导法转化烟草并进行ABA (100μmol·L(-1))、PEG8000 (20%)、Na Cl (250 mmol·L(-1))、PEG8000 (20%)、Na Cl (250 mmol·L(-1))和4℃低温处理,组织化学染色显示TaGAPCp1基因启动子能驱动GUS基因的表达但活性明显低于Ca MV35S,GUS活性分析显示TaGAPCp1基因启动子能响应非生物胁迫.通过农杆菌介导的浸花法转化拟南芥,经潮霉素和羧苄青霉素筛选及叶片PCR检测,最终获得稳定遗传的转基因拟南芥20株,并得知转基因拟南芥中的GUS基因能被干旱胁迫显著诱导表达.
关键词(KeyWords): 小麦;TaGAPCp1基因启动子;逆境胁迫;稳定表达
基金项目(Foundation): 国家自然科学基金资助项目(31271625、31271609);; 黄土高原土壤侵蚀与旱地农业国家重点实验室专项(10502)
作者(Authors): 魏文杰;邓霞;杨淑慎;
参考文献(References):
- [1] KOSOVA A,KHODYREVA S N,LAVRIK I. Role of glyceraldehyde-3-phosphate dehydrogenase(GAPDH)in DNA re-pair[J]. Biochemistry(Moscow),2017,82(6):643-654.
- [2] JESUS M,BORJA CASCALESMINANA,ASUNCION I,et al. The plastidial glyceraldehyde-3-phosphate dehydrogenaseis critical for viable pollen development in arabidopsis[J]. Plant Physiology,2010,152(4):1830-1841.
- [3] WANG J,WANG Y,LU Q,et al. Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phos-phate dehydrogenase[J]. Biochemical and Biophysical Research Communications,2017,488(1):88-92.
- [4] GANI Z,BORADIA V M,RAGHU RAM J,et al. Purification and characterization of glyceraldehyde-3-phosphate-dehy-drogenase(GAPDH)from pea seeds[J]. Protein Expression and Purification,2016,127:22-27.
- [5] SIROVER M A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase:Biochemical mechanisms andregulatory control[J]. Biochimica et Biophysica Acta,2011,1810(8):740-751.
- [6] FLORES M,ANOMAN A D,ROSA S,et al. Overexpression of the triose phosphate translocator(TPT)complements theabnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants[J].Plant Journal for Cell&Molecular Biology,2017,89(6):1146-1158.
- [7] ANOMAN A D,MARA FLORES-TORNERO,SARA ROSA-TELLZ,et al. The specific role of plastidial glycolysis inphotosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase[J/OL]. Plant Signaling&Behavior,2016,11(3). DOI:10. 1080/15592324. 2015. 1128614.
- [8] ANOMAN A D,MUNOZ-BERTOMEU J,ROSA-TELLEZ S,et al. Plastidial glycolytic glyceraldehyde-3-phosphate de-hydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in arabidopsis[J].Plant Physiology,2015,169(3):1619-1627.
- [9] PIATTONI C V,FERRERO D M L,IGNACIO D,et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenase is phospho-rylated during seed development[J/OL]. Frontiers In Plant Science,2017,8(190). DOI:10. 3389/fpls. 2017. 00522.
- [10] MAO R,TENG D,WANG X,et al. Optimization of expression conditions for a novel nz2114-derived antimicrobial pep-tide-mp1102 under the control of the gap promoter in pichia pastoris x-33[J]. BMC Microbiology,2015,15(1):57-69.
- [11] GAO H,WANG Y,XU P,et al. Overexpression of a WRKY transcription factor Ta WRKY2 enhances drought stresstolerance in transgenic wheat[J]. Frontiers in Plant Science,2018,9:997-1016.
- [12]张琳.小麦长武134 GAPDH基因在3种非生物胁迫下的表达分析[D].杨凌:西北农林科技大学,2014.
- [13] ZENG L,DENG R,GUO Z,et al. Genome-wide identification and characterization of glyceraldehyde-3-phosphate de-hydrogenase genes family in wheat(triticum aestivum)[J]. BMC Genomics,2016,17(1):240-253.
- [14]何辉.光皮桦Bl OFPs基因克隆及其互作蛋白分析[D].杭州:浙江农林大学,2016.
- [15] SPARKES I A,RUNIONS J,KEARNS A,et al. Rapid,transient expression of fluorescent fusion proteins in tobaccoplants and generation of stably transformed plants[J]. Nature Protocols,2006,1(4):2019-2025.
- [16]蒋小兵,杨惠娟,王豪杰,等.苹果果实β-半乳糖苷酶基因启动子的克隆与功能分析[J].西北植物学报,2017,37(1):59-66.
- [17] RATANASUT K,ROD-IN W,SUJIPULI K. In planta agrobacterium-mediated transformation of rice[J]. Rice Sci-ence,2017,24(3):181-186.
- [18] RORETZ C V,GALLOUZI I E. Decoding are-mediated decay:Is microrna part of the equation?[J]. Journal of CellBiology,2008,181(2):189-194.
- [19] LI F,HAN Y,FENG Y,et al. Expression of wheat expansin driven by the rd29 promoter in tobacco confers water-stresstolerance without impacting growth and development[J]. Journal of Biotechnology,2013,163(3):281-291.
- [20] LIU J,FENG L,LI J,et al. Genetic and epigenetic control of plant heat responses[J]. Frontiers in Plant Science,2015(6):267-281.
- [21] ALEXANDROVA E A,OLOVNIKOV I A,MALAKHOVA G V,et al. Sense transcripts originated from an internal partof the human retrotransposon line-1 5'UTR[J]. Gene,2012,511(1):46-53.
- [22] TORRE C,FINER J. The intron and 52 distal region of the soybean gmubi promoter contribute to very high levels ofgene expression in transiently and stably transformed tissues[J]. Plant Cell Reports,2015,34(1):111-120.
- [23] IKEGAMI K,OKAMOTO M,SEO M,et al. Activation of abscisic acid biosynthesis in the leaves ofarabidopsis thali-anain response to water deficit[J]. Journal of Plant Research,2009,122(2):235-243.
- [24] LI T,LI T,JI W,et al. Engineering of core promoter regions enables the construction of constitutive and inducible pro-moters in halomonas sp.[J]. Biotechnology Journal,2016,11(2):219-227.
- [25] JING A,CONG C,ZHENMIN H,et al. The Panax ginseng Pg TIP1,gene confers enhanced salt and drought toleranceto transgenic soybean plants by maintaining homeostasis of water,salt ions and ROS[J]. Environmental and Experimen-tal Botany,2018,155:45-55.
- [26] YUE Y,ZHANG M,ZHANG J,et al. Sos1 gene overexpression increased salt tolerance in transgenic tobacco by maintaininga higher k+/na+ratio[J/OL]. Journal of Plant Physiology,2012,169(3). DOI:10. 1016/j. jplph. 2011. 10. 007.
- [27]毋若楠,王红,杨成成,等.拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J].西北植物学报,2017,37(10):1904-1909.