含两参数非线性系统边值问题的奇摄动Singular Perturbation of Boundary Value Problem for Nonlinear Systems Involving Two Small Parameters
倪守平;
摘要(Abstract):
本文应用含多个小参数的微分方程组的对角化方法,研究了一类含两个小参数的非线性向量微分方程组边值问题解的存在性,并作出了解的任意阶的渐近展开式及其余项估计。
关键词(KeyWords): 两参数;向量微分方程组;奇摄动;对角化方法
基金项目(Foundation): 国家自然科学基金
作者(Authors): 倪守平;
参考文献(References):
- [1] O' Malley R E JR. On initial value problems for nonlinear systems of differential equations with two small parameters. Arch. Rational Mech. Anal., 1971, 40(3) : 209~222
- [2] 倪守平.奇摄动非线性向量方程初值问题的第二边界层现象.福建师范大学学报(自然科学版),1990,6(4) :11~17
- [3] O'Malley R E JR. Boundary value problems for linear systems of ordinary differential equations involving many small parameters. J. Math. Mech., 1969, 18(9) : 835~856
- [4] #12
- [5] 江福汝.关于常微分方程非线性边值问题的奇异摄动.中国科学(A辑),1985(3) :232~242
- [6] 倪守平.奇摄动非线性系统的渐近解.科学通报,1989(34) :1195
- [7] Chen J, O' Malley R E JR. On the asymptotic solution of a two-parameter boundary value problem of chemical reacmor theory. SIAM J. Appl. Math., 1974(26) : 717~729
- [8] 周焕文.合成展开法应用于求球壳弯曲第一和第二边界层问题.应用数学和力学,1983(4) :763~770
- [9] 赵公允.含多个小参数的线性微分方程组的对角化.厦门大学学报(自然科学版),1987,26 (5) :517~523
- [10] Coppel W A.Dichotomis and reducibility. J. Diff. Eqs.,1967(3) : 500~521
- [11] Chang K W. Diagonalization method for a vector boundary value problem of singular perturbation type. J. Math.Anal.Appl.,1974(48) : 652~665
- [12] 倪守平.伴有边界摄动的向量,高阶非线性边值问题的奇摄动.数学物理学报,1984(4) :345~354
- [13] 林宗池.非线性系统边值问题的奇摄动.福建师范大学学报(自然科学版),1989,5(4) :1~8