正则2-连通图的最长圈Longest Cycle in Regular 2-connected Graphs
陈瑞袁;
摘要(Abstract):
<正> P.Erdos和A M Hobbs在[1]中提出如下的结论:设k≥6,G是2k个顶点的(k-2)次正则的2-连通图,则G是Hamilton图(以下简称为H图)。本文提出比上述结论更为广泛的定理:定理1 设k≥4,G是n个顶点的(k-2)次正则的2-连通图,则除G是peterson图外,G必有个长至少为min{n,2k}的圈。由于:(i)定理1中的k=4时,G是2-正则2-连通图,G是H图,它有个长为n≥min{n,2k}的圈;(ii)定理1中的k≥5且n≤3(k-2)时,根据[2]中的B.Jackson定理知,这时G是H图,它有个长为n≥min{n,2k}的圈。因此,要证明定理1成立,只要证明如下的定理2成立。定理2 设n≥3k-5≥2k,G是n个顶点的(k-2)次正则的2-连通图,则除G是Peterson图外,G必有个长至少为2k的圈。在证明定理2的过程中,本文作下列的假设:
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 陈瑞袁;
参考文献(References):
- [1] P.Erdos and A.M.Hobbs,Hamiltonian cycles in regular graph of moderate degree,J.Combinatorial Theory B.23(1977) ,P.139-142.
- [2] B.Jackson,Hamilton cycles in regular 2-connected graphs,J.Combinatorial Theory B.29(1980) ,P.27-46.
- [3] J.C.Bermond,Hamiltonian graphs selected topics in graph theory,Edited by L.W.Beinke,R.J.Wilson,Academic press,1979,P.127-167.