关于模序对的对偶性On Duality of Module Pairs
吴金明;周德旭;
摘要(Abstract):
作为推广,引入了Hopfian模序对与co-Hopfian模序对(M,N),广义Hopfian模序对与弱co-Hopfian模序对(M,N)的概念,并证明了这两个模序对构成了Morita对偶对.
关键词(KeyWords): 模序对;co-Hopfian;Hopfian;Morita对偶
基金项目(Foundation): 福建省教育厅基金(A类)资助项目(JA05212;JA06009);; 福建省科技厅F5项目(2007F5038)
作者(Authors): 吴金明;周德旭;
参考文献(References):
- [1]Varadarajan K.Hopfian and co-Hopfian objects[J].Publications Mathematiques,1992,36:293-317.
- [2]Ghorbani A,Haghany A.Duality for weakly co-Hopfian and generalized Hopfian modules[J].Comm Algebra,2003,31:2811-2817.
- [3]Ghorbani A,Haghany A.Generalized Hopfian modules[J].J Algebra,2002,255:324-341.
- [4]Xue Weimin.Hopfian and co-Hopfian modules[J].Comm Algebra,1995,23:1219-1229.
- [5]詹志辉.具有性质(*)的模序偶[J].福建师范大学学报:自然科学版,1996,12(2):12-15.
- [6]Anderson F W,Fuller K R.Ring and categories of modules[M].2nd edition.NewYork:Spring-Verlag,1992.
- [7]Xue Weimin.Rings with Morita duality[M].Berlin:Springer-Verlag,1992.