线性有界算子的点谱连续性On the Continuity of Point Spectrum of Bounded Linear Operators
单佑民;
摘要(Abstract):
本文给出可分、复Hilbert空间上线性有界算子的点谱及与点谱有关的一些谱的子集在小范数摄动下“连续”的充要条件,还讨论了点谱的“紧连续”问题.关于“闭值域点”和“T-正则点”的结论推广了[5]和[7]的结果。最后对约化点谱算子特别是正规算子在小范数紧摄动下的特征值变化问题得到一些结论。
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 单佑民;
参考文献(References):
- [1] 林辰,《线性算子的本性谱及有关问题》,在第二次全国高师院校泛函分析教学科研交流会上的报告,1982年5月.
- [2] C. Apostol and B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. Vol 26. No 3(1977) , 427-442.
- [3] 林辰,《有特征值的线性有界算予全体的集的一些性质》,《福建师大学报》(自然科学版)1982第1期.
- [4] J.B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations and Operator Thecry, Vol 2/2(1979) .
- [5] C. Apostol, The correction by compact perturbation of the singular behavior of operators, Rev.Roum. Math. Pures et Appl. 21(1976) , 155-175.
- [6] H.Radgavi and P. Rosenthal Invariant Subspace, Springer-Verlag, 1973.
- [7] C. Apostol, On the closed range points in the spectrum of operators, Rev. Roum. Math. Pures et Appl. 2I(1976) , 971-975.
- [8] I. Berg, An extension of the Weyl-Von Neumann theorem to normal operators, Trans. Amer. Math. Soc.Vol 160 ( 1971 ).
- [9] J. B. Conway and B. B. Morrel, Operator that are points of spectral continuity, Ⅱ, Integral Equations and Operator Theory, Vol, 4(1981) .
- [10] J. B. Conway and B. B. Morrel Operators that are points of spectral continuity, Ⅲ. Intergral Equations and Operator Theory Vol, 6(1983) .
- [11] J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. Vol. 9, 1 (1974) , 165-175