一类二次半定规划问题及其内点算法The Quadratic Semi-definite Programming Problem and Its Interior Point Algorithm
康志林;张圣贵;
摘要(Abstract):
讨论一类二次半定规划对偶性理论及与半定最小二乘问题的联系,并在对偶理论基础上讨论该规划的原始对偶内点算法,同时给出了基于NT方向的唯一性证明.
关键词(KeyWords): 二次半定规划;对偶理论;半定最小二乘;原始对偶内点算法
基金项目(Foundation): 福建省自然科学基金资助项目(2006J0202);; 福建省教育厅基金资助项目(JA050210)
作者(Authors): 康志林;张圣贵;
参考文献(References):
- [1]Xiu Cuiguan,Zai Yundiao.The quadratic semidefinite programming problem and its projection and contractionalgorithms[J].Numerical Mathematics a Journal of Chinese University,2002,24(2):97-108.
- [2]Xu Fengmin,Xu chengxian.Primal-dual algorithm for quadratic semidefinite programming[J].Chinese Journal ofEngineering Mathematics,2006,23(4):590-598.
- [3]Todd M J,Toh K C,Tutuncu R H.On the Nesterov-todd direction in semidefinite programming[J].SIAMJournal on Optimization,1998(8):769-796.
- [4]Helmberg C.Semidefinite programming for combinatorial optimization[M].Germany:Zuse Institute Berlin,2000.
- [5]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
- [6]Malick J.A dual approach to semidefinite least-squares problems[J].SIAM J Matrix Anal Appl,2005(26):272-284.
- [7]Sun Defeng,Sun Jie.Semismooth matrix valued functions[J].Mathematics of Operations Research,2002,27(1):150-169.
- [8]Kruk S,Muramatsu M,Rendl F,et al.The Gauss-Newton direction in semidefinite programming[M].Canada:Research Report CORR,1998.