编织Fusion框架Weaving Fusion Frames
蔡碧琼;
摘要(Abstract):
Hilbert空间上的两个fusion框架{(X_n,u_n)}∞_(n=1)与{(Y_n,v_n)}∞_(n=1)与{(Y_n,v_n)}∞_(n=1)称为woven的,若存在一致的常数0c)是个fusion框架且有fusion框架界A,B.序列{(X_n,u_n)}_(n∈σ)∪{(Y_n,v_n)}_(n∈σc)是个fusion框架且有fusion框架界A,B.序列{(X_n,u_n)}_(n∈σ)∪{(Y_n,v_n)}_(n∈σc)称为一个编织.两个fusion框架称为弱woven的,若不要求对所有的编织存在一致的框架界.证明了Hilbert空间上的两个fusion框架{(X_n,u_n)}c)称为一个编织.两个fusion框架称为弱woven的,若不要求对所有的编织存在一致的框架界.证明了Hilbert空间上的两个fusion框架{(X_n,u_n)}∞_(n=1)与{(Y_n,v_n)}∞_(n=1)与{(Y_n,v_n)}∞_(n=1),若满足dim X_n<∞且dim Y_n<∞(任意n∈N),则它们是woven的当且仅当它们是弱woven的.
关键词(KeyWords): fusion框架;编织;woven;Hilbert空间
基金项目(Foundation): 国家自然科学基金资助项目(11201071、11401101)
作者(Authors): 蔡碧琼;
参考文献(References):
- [1]DUFFIN R G,SCHAEFFER A C.A class of nonharmonic Fourier series[J].Trans Amer Math Soc,1952,72:341-366.
- [2]DAUBECHIES I,GROSSMAN A,MEYER Y.Painless nonorthogonal expansions[J].J Math Phys,1986,27:1271-1283.
- [3]DAUBECHIES I.Ten lectures on wavelets[M].SIAM,Philadelphia:PA,1992.
- [4]CASAZZA P G.The art of frame theory[J].Taiwanese J Math,2000,4(2):129-201.
- [5]CHRISTENSEN O.An introduction to frames and riesz bases[M].Boston:Birkhauser,2003.
- [6]CASAZZA P G,KUTYNIOK G.Finite Frames[M].New York:Birkhauser,2012.
- [7]HAN D,LARSON D R,LIU B,et al.Operator-valued measures,dilations,and the theory of frames[J].Mem Amer Math Soc,2014,229(1075):1-84.
- [8]FORNASIER M.Quasi-orthogonal decompositions of structured frames[J].J Math Anal Appl,2004,289:180-199.
- [9]CASAZZA P G,KUTYNIOK G.Frames of subspaces[J].Contemp Math,2004,345:87-113.
- [10]ASGARI M S,KHOSRAVI A.Frames and bases of subspaces in Hilbert spaces[J].J Math Anal Appl,2005,308:541-553.
- [11]CASAZZA P G,KUTYNIOK G,LI S.Fusion frames and distributed processing[J].Appl Comput Harmon Anal,2008,25:114-132.
- [12]BEMROSE T,CASAZZA P G,GROCHENIG K,et al.Weaving frames[DB/OL].arxiv:1503.03947v1,2015.