一种求解非对称线性方程组的平稳的共轭残差平方法A Stabilized CRS Method for Solving Nonsymmetric Linear Systems
刘玉龙;张衡;
摘要(Abstract):
CRS(共轭残差平方)方法是一种运用比较广泛的求解大型稀疏非对称系数矩阵线性方程组的迭代方法,然而,在很多情况下CRS方法却显示出不稳定的收敛行为.针对这个问题,提出了SCRS(平稳共轭残差平方)方法,并将SCRS方法与CGS(共轭梯度平方)方法和Bi CGSTAB(稳定的双共轭梯度)方法进行了比较.理论分析和数值实验结果显示,SCRS方法比CRS方法更为稳定,而且有着较CGS方法和Bi CGSTAB方法更好的收敛效果.
关键词(KeyWords): CRS方法;收敛行为;非对称稀疏线性方程组;SCRS方法
基金项目(Foundation): 福建省自然科学基金资助项目(2014J01006)
作者(Authors): 刘玉龙;张衡;
参考文献(References):
- [1]LANCZOS C.Solution of systems of linear equations by minimized iterations[J].Res Nat Bur Standards,1952,49:33–53.
- [2]SONNEVELD P.CGS:a fast Lanczos-type solver for nonsymmetric linear systems[J].SIAM J Sci Statist Comput,1989,10:36-52.
- [3]VAN Der Vorst H A.Bi CGSTAB:a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J].SIAM Sci Statist Comput,1992,13:631-644.
- [4]GUTKNECHT M H.Variants of Bi CGSTAB for matrices with complex spectrum[J].SIAM Sci Comput,1993,14:1020-1033.
- [5]SLEIJPEN G L G,FOKKEMA D R.Bi CGSTAB(l)for linear equations involving unsymmetric matrices with complex spectrum[J].Elec Trans Numer Anal,1993,1:11-32.
- [6]ZHANG S L.GPBi-CG:generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems[J].SIAM J Sci Comput,1997,18:537-551.
- [7]SOGABE T,SUGIHARA M,ZHANG S L.An extension of the conjugate residual method to nonsymmetric linear systems[J].J Comp Appl Math,2009,226(1):103-113.
- [8]SOGABE T,FUJINO S,ZHANG S L.A product-type krylov subspace method based on conjugate residual method for nonsymmetric coefficient matrices[J].Transaction of IPSJ,2007,48:11-21.
- [9]SOGABE T,ZHANG S L.Extended conjugate residual methods for solving nonsymmetric liner systems[M].Beijing:Science Press,2003.
- [10]SOGABE T.Extension of the conjugate residual method[D].Tokyo:Department of Applied Physics,The University of Tokyo,2007.