互补约束数学规划问题的二阶Mond-Weir型对偶理论Mond-Weir Type Second-order Duality Theory for Mathematical Programs with Complementarity Constraints
张秋林;林惠玲;
摘要(Abstract):
基于S-稳定性条件,建立了互补约束数学规划问题(MPCC)的二阶Mond-Weir型对偶模型.在二阶广义凸性假设下,证明了弱对偶定理,强对偶定理和严格逆对偶定理.给出了数值算例验证上述对偶定理的合理性,并说明二阶对偶模型所提供的下界比一阶的更紧.
关键词(KeyWords): 互补约束数学规划;二阶广义凸函数;Mond-Weir型对偶;对偶定理
基金项目(Foundation): 福建省青年创新基金项目(2016J05003)
作者(Authors): 张秋林;林惠玲;
参考文献(References):
- [1]LUO Z Q,PANG J S,RALPH D.Mathematical programs with equilibrium constraints [M].New York:Cambridge University Press,1996.
- [2]RAGHUNATHAN A U,BIEGLER L T.Mathematical programs with equilibrium constraints (MPECs) in process engineering [J].Computers and Chemical Engineering,2003,27(10):1381-1392.
- [3]HEMPEL A B,GOULART P,LYGEROUS J.Strong stationarity conditions for optimal control of hybrid systems [J].IEEE Transactions on Automatic Control,2017,62(9):4512-4526.
- [4]AKBARI T,BINA M T.Merchant transmission capacity investment:a mathematical program with equilibrium constraint formulation [J].Electric Power Components and Systems,2015,44(1):1-8.
- [5]SCHEEL H,SCHOLTES S.Mathematical programs with complementarity constraints:stationarity,optimality,and sensitivity [J].Mathematics of Operations Research,2000,25(1):1-22.
- [6]ANDREANI R,HAESER G,SECCHIN L D,et al.New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [J].SIAM Journal on Optimization,2019,29(4):3201-3230.
- [7]YE J J.Necessary and sufficient optimality conditions for mathemmatical programs with equilibrium constraints [J].Journal of Mathematical Analysis and Applications,2005,307(1):350-369.
- [8]GUO L,LIN G H,YE J J.Second-order optimality conditions for mathematical programs with equilibrium constraints [J].Journal of Optimization Theory and Applications,2013,158(1):33-64.
- [9]GUO L,LIN G H,YE J J.Stability analysis for parametric mathematical programs with geometric constraints and its applications [J].SIAM Journal on Optimization,2012,22(3):1151-1176.
- [10]GUO L,LIN G H,YE J J,et al.Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints [J].SIAM Journal on Optimization,2014,24(3):1206-1237.
- [11]ANITESCU M,TSENG P,WRIGHT S J.Elastic-mode algorithms for mathematical programs with equilibrium constraints:global convergence and stationarity properties [J].Mathematical Programming,2007,110(2):337-371.
- [12]JARA-MORONI F,PANG J S,WACHTER A.A study of the difference-of-convex approach for solving linear programs with complementarity constraints [J].Mathematical Programming,2018,169(1):221-254.
- [13]FLETCHER R,LEYFFER S,RALPH D,et al.Local convergence of SQP methods for mathematical programs with equilibrium constraints [J].SIAM Journal on Optimization,2002,17(1):259-286.
- [14]刘铭,董立娇,王秀玉.求解互补问题的改进粒子群算法研究 [J].东北师大学报(自然科学版),2018,50(4):43-47.
- [15]MOND B,WEIR T.Generalized concavity and duality,in generalized goncavity in optimization and economics [M].New York:Academic Press,1981:263-279.
- [16]MOND B,WEIR T.Duality for fractional programming with generalized convexity conditions [J].Journal of Information and Optimization Sciences,1982,3(2):105-124.
- [17]FERRARA M,MITITELU S.Mond-Weir duality in vector programming with generalized invex functions on differentiable manifolds [J].Balkan Journal of Geometry and Its Applications,2006,11(2):80-87.
- [18]赵晶.关于一类均衡约束数学规划问题的对偶性研究 [D].大连:大连理工大学,2013.
- [19]MOND B.Second order duality for non-linear programs [J].Opsearch,1974,11(2):90-99.
- [20]HUSAIN Z,JAYSWAL A,AHMAD.Second order duality for nondifferentiable minimax programming problems with generalized convexity [J].Journal of Global Optimization,2009,44(4):593-608.
- [21]AHMAD I,HUSAIN Z,AL-HOMIDAN S.Second-order duality in nondifferentiable fractional programming [J].Nonlinear Analysis Real World Applications,2011,12(2):1103-1110.
- [22]PADHAN S K,NAHAK C,MOHAPATRA R N.Second and higher order duality in Banach space under invexity [J].Nonlinear Analysis:Hybrid Systems,2011,5(3):457-466.
- [23]ZLINESCU C.On second-order generalized convexity [J].Journal of Optimization Theory and Applications,2016,168(3):802-829.