具超前变元微分方程解的基本存在定理An Existence Theorm for Differential Equations with Advanced Arguments
郑祖庥;林宜中;
摘要(Abstract):
本文考虑具超前变元微分方程其中x∈Rn,f:I×TRn,f:I×TRn(m÷1)→Rn(m÷1)→Rn,h_i(t)∈C(I→[0,h])h>0,对f在I×Rn,h_i(t)∈C(I→[0,h])h>0,对f在I×R(n(m+1))上连续的条件下证明了解的存在定理,并在一定的条件下证明了有界解的存在性。
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 郑祖庥;林宜中;
参考文献(References):
- [1] 郑祖庥、黄文纲,关于超前型方程的一些注记.(待发表).
- [2] S.Doss,& S.Nasr,On the functional Equations dy/dx=f(x,y(x),y(x+h)).h>0,Amer.J.Math.75(1953) ,713-716.
- [3] C.H.Anderson,Differential Difference Equations of advanced type,Univ,ofmissouri,ph.D.Dissertation,(1968) .
- [4] C.H.Anderson,Asymptotic Oscillation results for solutions to first-order nonlinear Differential Difference Equations of advanced type,J.Math.Anal.and Appl.24№2,(1968) ,430-439.
- [5] T.Kusano & H.Onose,Nonlinear Oscillation of second order Functional Differential Equations with advanced argument,J.Math.Soc.Japan,Vol29,№3,(1977) ,541-559.
- [6] S.Sugiyama,On some problems of Functional Differential Equations withadvanced argument,Proc.U.S.-Japan seminer on Differentia1 and FunctionalEquations,Minnessta,Jume,1967.
- [7] И.Г彼得罗夫斯基,常微分方程论讲义,高等教育出版社,1959.