求解非线性不等式组的一个光滑L-M方法A Smoothing L-M Method for the Systems of Nonlinear Inequalities
禹德;马昌凤;
摘要(Abstract):
通过构造新的光滑逼近函数,将非线性不等式组转化为非线性方程组,利用结合信赖域技巧的L-M方法对其求解.证明了算法具有全局收敛性和局部超线性收敛性.数值实验结果表明该算法是有效的.
关键词(KeyWords): 非线性不等式组;光滑逼近函数;L-M方法;全局收敛性;超线性收敛性
基金项目(Foundation): 国家自然科学基金资助项目(11071041)
作者(Authors): 禹德;马昌凤;
参考文献(References):
- [1]Daniel J W.Newtons method for nonlinear inequalities[J].Numer Math,1973,21:381-387.
- [2]Mayne D Q,Polak E,Heunis A J.Solving nonlinear inequalities in a finite number of iterations[J].Optim Theory Appl,1981,33:207-221.
- [3]Ma C.A globally convergent Levenberg-Marquardt method for the least l2-norm solution of nonlinear inequalities[J].Appl Math Comput,2008(206):133-140.
- [4]He C,Ma C.A smoothing self-adaptive Levenberg-Marquardt algorithm for solving system of nonlinear inequalities[J].Appl Math Comput,2010(216):3056-3063.
- [5]Ye F,Liu H,Zhou S,et al.A smoothing trust-region Newton-CG method for minimax problem[J].Appl Math Comput,2008(199):581-589.
- [6]Fan J.A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[J].Journal of Computational Mathematics,2003,21:625-636.
- [7]李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社,1999.
- [8]Powell M J D.Convergence properties of a class of minimization algorithms[C].New York:Academic Press,1975:1-27.
- [9]Fan J,Pan J.Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition[J].Comput Optim Appl,2006,34:47-62.
- [10]Fan J,Yuan Y.On the quadratic convergence of the Levenberg-Marquardt method without non-singularity assumption[J].Computing,2005,74:23-39.
- [11]More J J,Garbow B S,Hillstrom K H.Testing unconstrained optimization software[J].ACM Trans Math Software,1981,7:17-41.